SIGNIFICANCE OF THE R ${ }^{2}$ VALUE

In statistics, a value is often required to determine how closely a certain function fits a particular set of experimental data. In this module, we have relied on the R^{2} value computed in Excel to determine how closely our data conform to a linear relationship. R^{2} values range from 0 to 1 , with 1 representing a perfect fit between the data and the line drawn through them, and 0 representing no statistical correlation between the data and a line. The R^{2} value (often referred to as the goodness of fit) is computed as follows:
$\mathrm{R}^{2}=1-\frac{\sum\left(Y i-Y i^{\prime}\right)^{2}}{\sum(Y i-\bar{Y})^{2}}$
where Y_{i} represents an individual data point value, Y_{i} ' represents the value obtained by when the independent coordinate of this data point is input into the best-fit function (a line in this case). Therefore, Y_{i} ' represents the values of the data points projected onto the line of best fit (the ideal values). \bar{Y} represents the average of the Y_{i} values.

