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“But this will appear plainer by an Example or two.”3

Newton (1671)4

After outlining his general method for finding5

solutions of differential equations.6

1 Introduction7

Newton’s book [5], ANALYSIS Per Quantitatum, SERIES, FLUXIONES, AC DIFFEREN-8

TIAS: cum Enumeratione Linearum TERTII ORDINIS consists of one dozen problems. The9

second problem10

”PROB. II An Equation is being proposed, including the Fluxions of Quantities,11

to find the Relations of those Quantities to one another”12

is devoted to a general method of finding the solution of an initial-value problem for a scalar13

ordinary differential equation in terms of infinite series. The equation in the title of the14

present paper (see also Fig. 1) is the first significant example in the section on PROB. II.15

Newton thought of Mathematical quantities as being generated by a continuous motion.16

He called such a flowing quantity a fluent (variable), and referred to its rate of change as17

the fluxion of fluent of the quantity and denoted it by a dot over the quantity. He denoted18

the change of Relate Quantity (dependent variable) with respect to the Correlate Quantity19

(independent variable) with the ratio of their fluxions:20
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Figure 1: Original text of Newton’s differential equation.
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Equation
ẏ

ẋ
= 1− 3x + y + xx + xy

21

Let us interpret Newton in our current calculus jargon. If we consider the relate quantity
y(t) and the correlate quantity x(t) to be generated by continuous motions in time t then
their fluxions ẏ and ẋ are

ẏ =
dy

dt
, ẋ =

dx

dt

and the ratio of their fluxions becomes

ẏ

ẋ
=

dy

dx
.

Thus, Newton’s proposed equation, “including the Fluxions of Quantities,” can be written
as

dy

dx
= 1− 3x + y + x2 + xy

whose solution y(x) will yield “the Relations of those Quantities to one another.”22
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2 Newton’s Solution23

Newton obtained the solution of a differential equation satisfying a given initial condition in24

terms of infinite series. At each stage of his series solution, he inserted the series into his25

differential equation and integrated the resulting polynomial.26

Now, we will paraphrase [3] Newton’s steps and obtain several terms of his power series27

solution y(x) of his differential equation satisfying the initial condition y(0) = 0. Start with28

the first term29

y = 0 + · · ·30

and insert it into the differential equation to obtain31

dy

dx
= 1 + · · · .32

Now, integrate this with respect to x,33

y = x + · · ·34

to obtain the next term in the series. Inserting this series for y into the differential equation,35

yields36

dy

dx
= 1− 2x + · · ·37

integration of which gives38

y = x− x2 + · · · .39

The next iteration of this process gives40

dy

dx
= 1− 2x + x2 + · · ·41

and42

y = x− x2 + 1
3
x3 + · · · .43

Newton continues several more iterations and arrives at the solution44

y = x− x2 + 1
3
x3 − 1

6
x4 + 1

30
x5 − 1

45
x6 + · · · .45

2.1 Newton’s Demonstration46

It is prudent to verify that a proposed solution of a differential equation indeed satisfies the47

differential equation. Here is how Newton demonstrates the validity of his solution:48

DEMONSTRATION49
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56. And thus we have solved the Problem, but the demonstration is still behind.50

And in so great a variety of matters, that we may not derive it synthetically, and51

with too great perplexity, from its genuine foundations, it may be sufficient to52

point it out thus in short, by way of Analysis. That is, when any Equation is53

propos’d, after you have finish’d the work, you may try whether from the derived54

Equation you can return back to the Equation propos’d ... And thus from ẏ = 1−55

3x+y+xx+xy is derived y = x−x2+(1/3)x3−(1/6)x4+(1/30)x5−(1/45)x6, &c.56

And thence by Prob. I. ẏ = 1−2x+x2− (2/3)x3 +(1/6)x4− (2/15)x5, &c. Which57

two values of ẏ agree with each other, as appears by substituting x−xx+(1/3)x3−58

(1/6)x4 + (1/30)x5, &c. instead of y in the first value.59

3 Phaser Simulations60

A series solution of an initial-value problem, in principle, should yield better approximations61

to the solution as more terms of the series are included. In Fig. 2, third through sixth-order62

series approximations of the solution of Newton’s differential equation satisfying the initial63

condition y(0) = 0 are plotted.64

Figure 2: Third through sixth-order polynomial approximations of the Newton’s
series solution y = x− x2 + 1

3
x3 − 1

6
x4 + 1

30
x5 − 1

45
x6 + · · · are plotted.

A carefully computed actual solution of the differential equation satisfying the initial65

condition y(0) = 0 is plotted as the blue (lower) curve in Fig. 3. It was indicated above that66

one can expect better approximations as more terms of the series are included. However,67
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this expectation holds only locally near the initial condition, but not globally. Indeed, the68

fourth-order approximation appears to resemble the actual solution more than the fifth-order69

approximation.70

Newton also computed a series solution of his differential equation satisfying the initial71

condition y(0) = 1. A carefully computed graph of this solution is plotted in yellow (upper72

curve) in Fig. 3. More generally, Newton computed an infinity of solutions of his differential73

equation satisfying the initial condition y(0) = a for any real number a. More information74

about these solutions are contained in the Suggested Explorations below.75

At http://www.phaser.com/modules/history/newton/index.html an interactive version of76

this paper is available. With simple mouse clicks on Fig. 3 at this Phaser Web site [1], you can77

generate accurate solutions of Newton’s differential equation satisfying any initial condition.78

Figure 3: A carefully computed solution of Newton’s differential equation
dy

dx
= 1− 3x + y + x2 + xy satisfying the initial condition y(0) = 0 is plotted

in blue (lower curve). The additional solution in yellow (upper curve) satisfies
the initial condition y(0) = 1; Newton’s series of this solution is given in the
Suggested Explorations below.

4 Remarks: Newton, Leibniz, and Euler79

Newton’s differential equation is a scalar linear differential equation for which there exists a
formula for the solutions. Indeed, using this formula, one obtains the following closed-form
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solution of Newton’s differential equation satisfying the initial condition y(0) = 0:

y(x) = 4− x + e(x+1)2/2
(
3
√

2π
[

erf((x + 1)/
√

2)− erf(1/
√

2)
]
− 4e−1/2

)
.

Notice, however, that the solution above involves the error function

erf(x) =
2√
π

∫ x

0
e−t2/2dt

which cannot be expressed in terms of elementary functions. Full details of the calculations80

leading to this solution is available at the Phaser Web site [1].81

Like Newton, Leibniz also devoted a great deal of his attention to solving differential82

equations. His approach, however, was quite different from that of Newton’s. Leibniz seeked83

mostly closed-from solutions in terms of known functions; in fact, he is often credited with84

the discovery of the method of separation of variables. “One of the earliest discoveries in the85

integral calculus was that the integral of a given function could only in very special cases86

be finitely expressed in terms of known functions. So it is also in the theory of differential87

equations. That any particular equation should be integrable in a finite form is to be regarded88

as a happy accident; in the general case the investigator has to fall back, as in the example89

just quoted, upon solutions expressed in infinite series whose coefficients are determined90

by recurrence formulae [4].” Indeed, Newton could “solve” any differential equation (see91

the Suggested explorations below) usign his power series method, including the ones that92

Leibniz could not integrate. It is interesting to speculate whether Newton suspected that his93

differential equation could not be integrated in terms of elementary functions.94

Newton’s power series method can generate approximate solutions of any desired accuracy;95

however, the series solution is valid only near a given inital condition. Another method of96

generating approximate solutions of differential equation is the method of Euler[2] which is97

commonly presented as the simplest algorithm in numerical analysis of differential equations.98

It is likely that Euler might have been trying to rectify the shortcoming of the locality of the99

power series method by devising a new approximation method capable of generating solutions100

away from the initial condition. Indeed, Euler writes [2]:101

“... thus we can progress to values as distant from the initial values as we wish.”102

Unlike Newton, Euler does not present a specific differential equation to demonstrate the103

effectiveness of his method. However, he does point out a new kind of difficulty with his104

method in the following Corollary:105

Corollary 2. 652. Where smaller intervals are taken, through which the values106

of x progress iteratively, so much the more accurate values are obtained one at107

a time. However the errors committed one at a time, even if they may be very108

small, accumulate because of the multitude.109
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5 Suggested Explorations110

1. Newton solved his equation for the initial value y(0) = 1 as well. His answer, in this111

case, is y = 1 + 2x + x3 + 1
4
x4 + 1

4
x5 + · · ·.112

Demonstrate the validity of Newton’s solution a la Newton. This solution is plotted in113

yellow (upper curve) in Fig. 3 above.114

2. It is very interesting to observe that Newton calculates up to sixth-order (even) terms115

for the blue solution while he stops at the fifth-order (odd) terms for the yellow solution.116

Series solutions should become more accurate with additional terms; this may be true117

locally but not necessarily globally. Why do you think Newton stopped at the fifth-118

order terms for the yellow solution while continued to the sixth-order terms for the blue119

solution?120

3. Visit http://www.phaser.com/modules/history/newton/index.html and load Fig. 3 into121

your local copy of Phaser by simply clicking on the picture. Now, click the left mouse122

button at several locations along the vertical axis to mark additional initial conditions.123

Press the Go button of Phaser to see the additional solutions.124

4. Newton also computed the solution of his differential equation for the initial condition125

y(0) = a:126

”I said before, that these Solutions may be performed by an infinite variety127

of ways. This may be done if you assume at pleasure not only the initial128

quantity of the upper series, but any other given quantity for the first Term129

of the Quote, and then you may proceed as before. ...Or if you make use130

of any Symbol, say a, to represent the first Term indefinitely, by the same131

method of Operation (which I shall here set down,) y = a + x + ax − xx +132

axx+(1/3)x3 +(2/3)ax3 + · · · which being found, you may substitute 1, 2, 0,133

(1/2), or any other number, and thereby obtain the Relation between x and y134

an infinite variety of ways.”135

Verify his answer.136

5. Find the solution satisfying the general initial condition y(x0) = y0. Hint: Find the137

power series expansion in powers of (x− x0).138

6. Newton also studied differential equations whose right-hand-sides are more complicated139

than polynomials in x and y. In this case, he first expanded the differential equation140

into a power series and proceeded as before. Here is such an example.141

“ 32. And after the same manner the Equation ẏ/ẋ = 3y−2x+x/y−2y/(xx)142

being proposed; if, by reason of the Terms x/y and 2y/(xx), I write 1 − y143

for y, 1 − x for x, there will arise ẏ/ẋ = 1 − 3y + 2x + (1 − x)/(1 − y) +144

(2y−2)/(1−2x+x2. But the Term (1−x)/(1− y) by infinite Division gives145
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1−x+y−xy+y2−xy2+y3−xy3, &c. and the Term (2y−2)/(1−2x+xx) by a146

like Division gives 2y−2+4xy−4x+6x2y−6x2+8x3y−8x3+10x4y−10x4, &c.147

Therefore ẏ/ẋ = −3x + 3xy + y2− xy2 + y3− xy3, &c. + 6x2y− 6x2 + 8x3y−148

8x3 + 10x4y − 10x4, &c. ”149

Perform the ”infinite Divisions” and verify Newton’s calculations.150
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