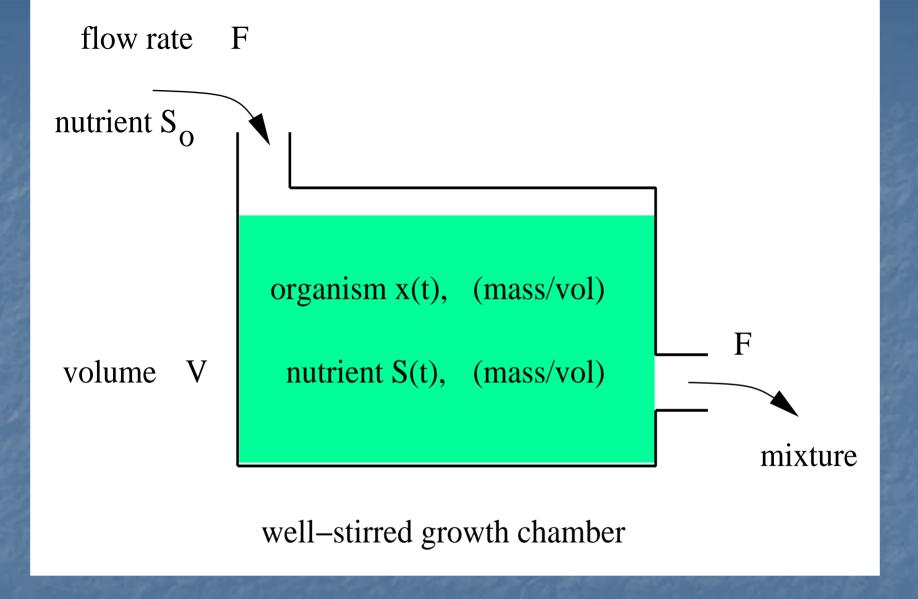
Chemostat Models



dx/dt = rate produced - rate out
dS/dt = rate in - rate out - rate consumed

Let g(S) be the growth rate of the organism with units of 1/time and is an increasing function of nutrient. Let γ be the *yield* constant which is the mass of the organism produced per unit mass of nutrient, i.e.,

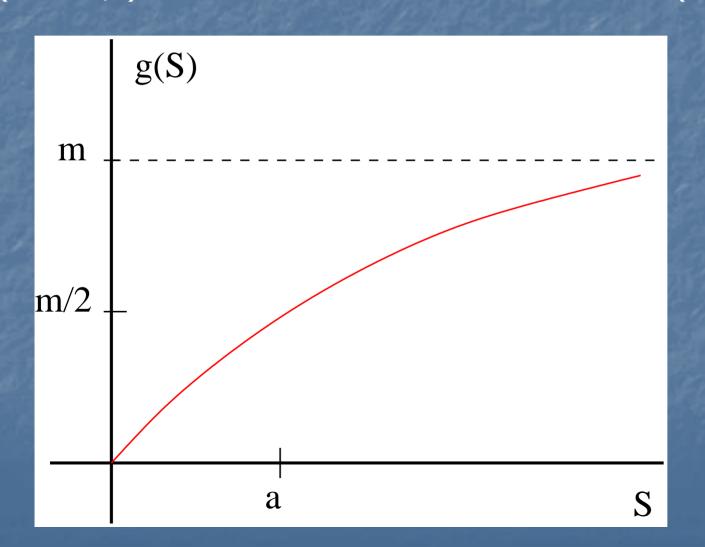
$$\gamma = \frac{\text{mass of organism produced}}{\text{mass of nutrient used}}.$$

Then the system of differential equations becomes:

$$\frac{dx}{dt} = g(S) x - \frac{F x}{V}$$

$$\frac{dS}{dt} = \frac{F S_0}{V} - \frac{F S}{V} - \frac{1}{\gamma} g(S) x.$$

Assume g(S)=mS/(a+S), a Monod or Michaelis-Menton saturation function, which means that the organism is limited in its ability to consume nutrient. m is the maximal growth rate (units 1/t) and a is the half-saturation constant (units mass/vol).



g(a)=m/2

Divide the first equation by γ and both equations by $S_0 F/V$:

$$\frac{V}{\gamma F S_0} \frac{dx}{dt} = \left[\frac{m \frac{V}{F} \frac{S}{S_0}}{\frac{a}{S_0} + \frac{S}{S_0}} \right] \frac{x}{\gamma S_0} - \frac{x}{\gamma S_0}$$

$$\frac{V}{FS_0} \frac{dS}{dt} = \frac{S_0}{S_0} - \frac{S}{S_0} - \left[\frac{m \frac{V}{F} \frac{S}{S_0}}{\frac{a}{S_0} + \frac{S}{S_0}} \right] \frac{x}{\gamma S_0} .$$

Scaling x by γS_0 , S by S_0 and t by V/F and replacing parameters a/S_0 by a and mV/F by m gives:

$$\frac{dx}{dt} = \left[\frac{mS}{a+S}\right] x - x$$

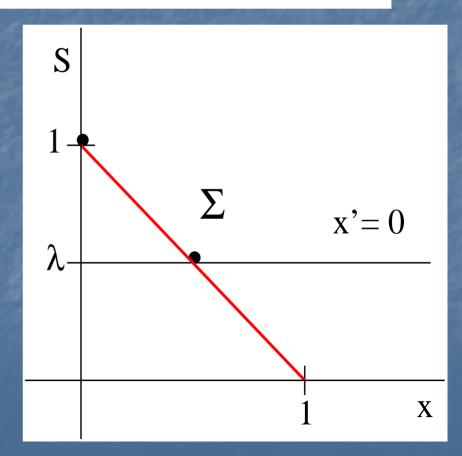
$$\frac{dS}{dt} = 1 - S - \left[\frac{mS}{a+S}\right] x .$$
(Ch)

Model Analysis

Define T=x+S and let "'" denote differentiation with respect to t. Clearly, T'=x'+S'=1-T so $T(t)=1+(T(0)-1)\,e^{-t}$ and solutions to (Ch) asymptotically approach the invariant unit simplex $\Sigma=\{(x,S):x+S=1\}$.

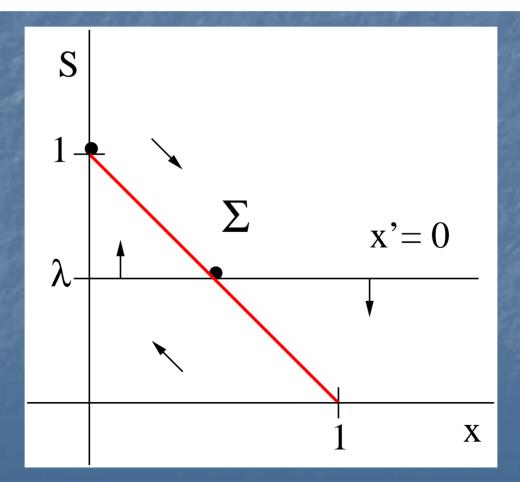
$$\frac{dx}{dt} = x \left[\frac{mS}{a+S} - 1 \right]$$

If m<1 then x'<0 and the equilibrium (x,S)=(0,1) is a global attractor, i.e., the organism dies out. If m>1 then the x-nullcline is the horizontal line S=a/(m-1). Define $\lambda=a/(m-1)$ and note that x'>0 if $S>\lambda$ and x'<0 if $S<\lambda$.



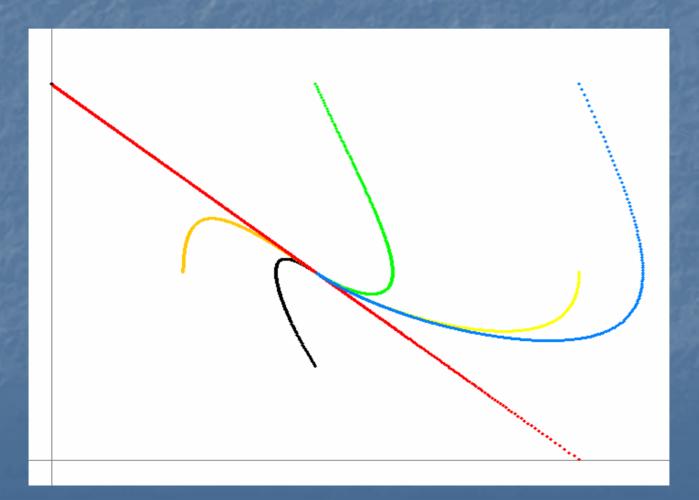
Model Analysis

 λ is called the *breakeven* concentration because it is the minimum for S so that x will grow. As λ decreases through 1 a new equilibrium $E=(1-\lambda,\lambda)$ bifurcates from (0,1). Assume that $\lambda<1$.



Model Analysis

When m>1 and $\lambda<1$, the equilibrium (0,1) is a saddle and $E=(1-\lambda,\lambda)$ is globally stable. If m=3 and a=1 then E=(.5,.5).



Competition

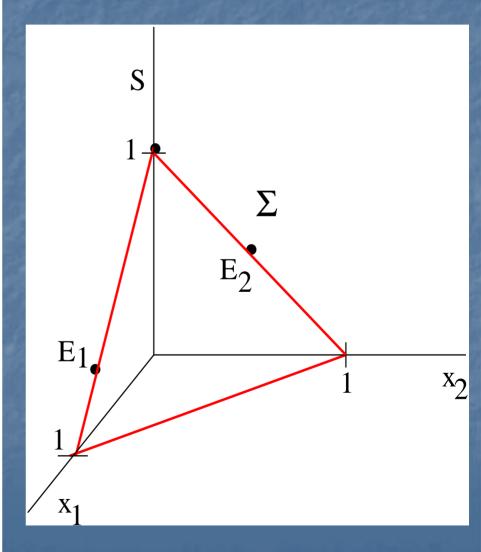
Assume two organisms x_1 and x_2 compete for the common nutrient S. The system of o.d.e's becomes:

$$x'_{1} = \frac{m_{1} S x_{1}}{a_{1} + S} - x_{1}$$

$$x'_{2} = \frac{m_{2} S x_{2}}{a_{2} + S} - x_{2}$$

$$S' = 1 - S - \frac{m_{1} S x_{1}}{a_{1} + S} - \frac{m_{2} S x_{2}}{a_{2} + S}.$$

Solutions approach the simplex $S+x_1+x_2=1$. If $m_i>1$ and $\lambda_i=a_i/(m_i-1)<1$ then the equilibria are (0,0,1), $E_1=(1-\lambda_1,0,\lambda_1)$ and $E_2=(0,1-\lambda_2,\lambda_2)$.



Competition

Since $S = 1 - x_1 - x_2$ on the attracting simplex Σ , the following 2-dim. system describes the behavior on Σ where $x_1 + x_2 \leq 1$:

$$x_1' = x_1 \left[\frac{m_1 (1 - x_1 - x_2)}{a_1 + 1 - x_1 - x_2} - 1 \right]$$

$$x_2' = x_2 \left[\frac{m_2 (1 - x_1 - x_2)}{a_2 + 1 - x_1 - x_2} - 1 \right]$$

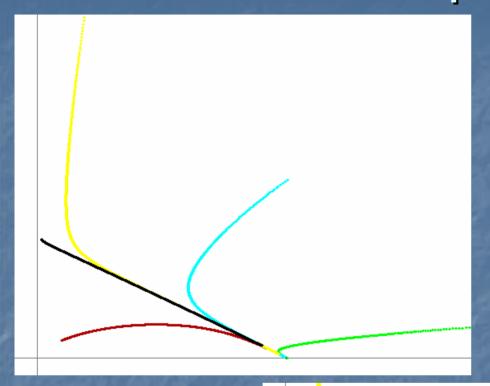
Using topological results like the Poincaré-Bendixson theorem and the Butler-McGehee lemma, it follows that:

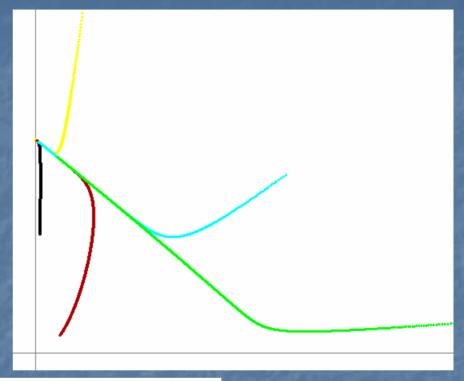
Theorem (Hsu, Hubbell, and Waltman, 1977). If $m_i > 1$ and $0 < \lambda_1 < \lambda_2 < 1$ then each solution with $x_i(0) > 0$ has $S(t) \to \lambda_1$, $x_1(t) \to 1 - \lambda_1$ and $x_2(t) \to 0$.

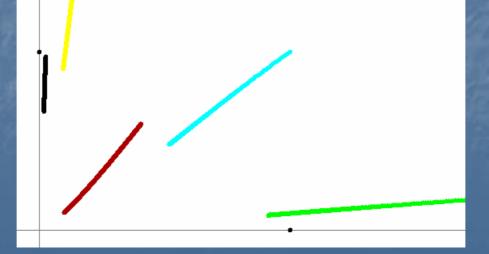
$$\lambda_1 = .5, \ \lambda_2 = .667$$

Competition

 λ_1 =.5, λ_2 =.4







 $x_1, x_2 \text{ on } \Sigma$

Prey-Predator

If x_1 is a prey and x_2 is a predator with a Michaelis-Menton interaction term then the system becomes:

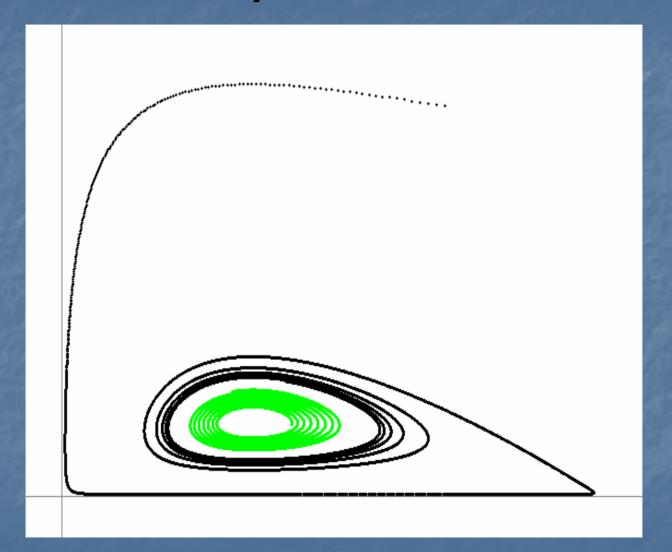
$$x'_{1} = \frac{m_{1} S x_{1}}{a_{1} + S} - \frac{m x_{1} x_{2}}{a + x_{1}} - x_{1}$$

$$x'_{2} = \frac{m_{2} S x_{2}}{a_{2} + S} + \frac{m x_{1} x_{2}}{a + x_{1}} - x_{2}$$

$$S' = 1 - S - \frac{m_{1} S x_{1}}{a_{1} + S} - \frac{m_{2} S x_{2}}{a_{2} + S}.$$

Solutions approach the simplex Σ where $S+x_1+x_2=1$. A Hopf bifurcation occurs in Σ at $a_1\approx 0.35$, $m_1=2$, $a_2=0.5$, $m_2=0.05$, a=0.25 and m=2 resulting in a globally stable periodic solution.

Prey-Predator



References

- L. Edelstein-Kesket, *Mathematical Models in Biology*, Random House, New York, 1988.
- S.B. Hsu, S.P. Hubbell and P. Waltman, A mathematical theory for single nutrient competition in continuous cultures of microorganisms, SIAM Jour. Appl. Math. 32, 366-383, 1977.
- H.L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.