Some Deterministic Models in Mathematical Biology: Physiologically Based Pharmacokinetic Models for Toxic Chemicals

> Cammey E. Cole Meredith College

> > January 7, 2007

Outline

- Introduction to compartment models
- Research examples
- Linear model
 - Analytics
 - Graphics
- Nonlinear model
- Exploration

Physiologically Based Pharmacokinetic (PBPK) Models in Toxicology Research A physiologically based pharmacokinetic (PBPK) model for the uptake and elimination of a chemical in rodents is developed to relate the amount of IV and orally administered chemical to the tissue doses of the chemical and its metabolite.

Characteristics of PBPK Models

- Compartments are to represent the amount or concentration of the chemical in a particular tissue.
- Model incorporates known tissue volumes and blood flow rates; this allows us to use the same model across multiple species.
- Similar tissues are grouped together.
- Compartments are assumed to be well-mixed.

- Q_K is the blood flow into the kidney.
- CV_K is the concentration of chemical in the venous blood leaving the kidney.

Example of Compartment in PBPK Model $\frac{dC_{K}}{dt} = \frac{Q_{K}(C_{Bl} - CV_{K})}{V_{K}}$

- *C_K* is the concentration of chemical in the kidney at time *t*.
- C_{Bl} is the concentration of chemical in the blood at time *t*.
- CV_K is the concentration of chemical in the venous blood leaving the kidney at time *t*.
- Q_K is the blood flow into the kidney.
- V_K is the volume of the kidney.

Benzene

Benzene Plot

9

4-MI Female Rat Data (NTP TK)

4-MI Female Rat Data (Chronic)

12

Linear Model Example

- A drug or chemical enters the body via the stomach. Where does it go?
- Assume we can think about the body as three compartments:
 - Stomach (where drug enters)
 - Liver (where drug is metabolized)
 - All other tissues
- Assume that once the drug leaves the stomach, it can not return to the stomach.

Schematic of Linear Model

- x₁, x₂, and x₃ represent amounts of the drug in the compartments.
- a, b, and c represent linear flow rate constants.

Linear Model Equations

Let's look at the change of amounts in each compartment, assuming the mass balance principle is applied.

$$\frac{dx_1}{dt} = \frac{dx_2}{dt} = \frac{dx_3}{dt} = \frac{dx_3}{dt}$$

Linear Model Equations

Let's look at the change of amounts in each compartment, assuming the mass balance principle is applied.

$$\frac{dx_1}{dt} = -ax_1$$
$$\frac{dx_2}{dt} = ax_1 - bx_2 + cx_3$$
$$\frac{dx_3}{dt} = bx_2 - cx_3$$

Linear Model (continued)

Let's now write the system in matrix form.

Linear Model (continued)

- Find the eigenvectors and eigenvalues.
- Write general solution of the differential equation.
- Use initial conditions of the system to determine particular solution.

Finding Eigenvalues of A

Set the determinant of $A - \lambda I$ equal to zero and solve for λ .

	$a - \lambda$	0	0	
	a	$-b-\lambda$	С	
	0	b	$-c-\lambda$	
	=(-a	$(-\lambda)[(-b -$	$-\lambda)(-c$	$-\lambda)-bc$
	=(-a	$-\lambda)[bc +$	$b\lambda + c\lambda$	$+\lambda^2 - bc$
	=(-a	$-\lambda)[(b +$	$c)\lambda + \lambda^2$]
	$=\lambda(-$	$(\lambda - \lambda)(\lambda - \lambda)$	+b+c)	
λ	= 0, -a	a, -(b+c)	;)	

Finding Eigenvectors Consider $\lambda = 0$. $\begin{bmatrix} -a & 0 & 0 \end{bmatrix}^{-1}$

$A - 0I = \begin{bmatrix} -a & 0 & 0 \\ a & -b & c \\ 0 & b & -c \end{bmatrix}$

Finding Eigenvectors $\lambda = 0$ C

Finding Eigenvectors

Consider $\lambda = -a$.

Finding Eigenvectors $\lambda = -a$

 $|ab+ac-a^2|$ $a^2 - ac$ -ab

Finding Eigenvectors Consider $\lambda = -(b+c)$.

$$A + (b+c)I = \begin{bmatrix} -a + (b+c) & 0 & 0 \\ a & -b + (b+c) & c \\ 0 & b & -c + (b+c) \end{bmatrix}$$
$$= \begin{bmatrix} -a + (b+c) & 0 & 0 \\ a & c & c \\ 0 & b & b \end{bmatrix}$$

Linear Model (continued)

Then, our general solution would be given by:

Parameter Values and Initial Conditions For our example, let *a*=3, *b*=4, and *c*=1, and use

the initial conditions of

$$x_1(0) = 9$$
$$x_2(0) = 0$$
$$x_3(0) = 0,$$

we are representing the fact that the drug began in the stomach and there were no background levels of the drug in the system.

Linear Model (continued)

Then, our particular solution would be given by:

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = k_{1} \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix} + k_{2} \begin{bmatrix} 6 \\ 6 \\ -12 \end{bmatrix} e^{-3t} + k_{3} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} e^{-5t}$$

with

$$k_1 = \frac{4}{5}, \quad k_2 = \frac{2}{3}, \quad k_3 = -\frac{24}{5}$$

Schematic of Nonlinear Model Stomach $\boldsymbol{x_1}$ **a** Liver Vx_2 \boldsymbol{x}_2 $\overline{K+x_2}$ **Metabolite** h С $\boldsymbol{X}_{\boldsymbol{A}}$ **Other Tissues** $\boldsymbol{x_3}$

 x_1, x_2, x_3 , and x_4 represent amounts of the drug (or its metabolite).

Nonlinear Model Equations

Exploration

- What would happen if one of the parameter values were doubled? halved?
- What would happen if the initial conditions were changed to represent some background level present in the liver or other tissues?

We will now use Phaser to explore these questions.