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          Syllabus 
 

• A brief  Introduction to MAPLE 
• One Dimensional Models 

          Lab 1, Lab 2 
• Linear Systems,  Leslie Models and life cycles, determinant-

trace stability analysis, and Age-Structured Models 
• Nonlinear two-dimensional Models: Stability and 

Bifurcation 
• Competition Models 

          Lab 3 
• Predator-Prey and Host-parasite Models 

          Lab 4 
• Genetics and the Hardy-Weinberg principle 
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Mathematical Modeling: 
 
Objectives: 
• Developing Mathematical Models 
• Graphical Analysis of the Models: Time Series and 

Cob-Web Diagrams 
• Conducting Laboratory Experiments 
• Plotting the raw data and parameter estimation 
• Comparing the data from the laboratory and the data 

obtained from the mathematical models 
• Modifying the Models 
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One-dimensional Models 
 
The main focus here is on populations which are a basic unit in ecology. A 

population is defined as a group of individuals of the same species within a 
limited area. Mathematical Models are used to predict the size or density 
(population size per unit area) of a population at any time in the future.   

 
Most plants, insects, mammals and organisms reproduce seasonally or they 

reproduce only once (semelparous species) (multiple reproductions: Iteroparity 
species). In these situations, we measure the size of a population at periodic 
intervals of time, or from one generation to the next.  

 

Let:  
=tN the size (density) of a population at time t, 
=  +1tN the size (density) of a population at time 1+t . 
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Then our model can be written in the form )(1 tt NFN =+  
 
This equation will be written in a more convenient form.  
 

    )(1 ttt NfNN =+  
 

Where  
 
Nt+1 / Nt is called the fitness function of the population or the rate of 
population growth, or the net reproduction rate.  
 
Equation (1) or (2) is called a difference equation, where +∈Zt , the set of 
nonnegative integers. 
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• Two types of Models 
 

I. Density independent (Linear) Models 
 

A population model is said to be “density dependent” (i.e. linear) if its fitness 
(rate of population growth) function )(Nf  is independent of its size (density).  
 

 That is, if =)(Nf constant = R. Thus 
 
     RNt =+1 tN  
By iteration, we obtain the solution 
 
     o

t
t NRN =  

In this case, either  as t ONt → ∞→  if R > 1. 
• For a continuous model, we would have 

      rN
dt
dN

, whose solution is rt
oeNtN =)( .  Thus reR r +≈= 1   =
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II. Density dependent (Nonlinear Models) 
 

In these models, we assume that the fitness function )(Nf depends on the 
size (density) of the population. The central question now is “how to find 
the appropriate fitness function.” 
 

• A unified approach for discrete models 
 

Biological Assumptions 
 

1. When the population size is very small )0( =N , the population grows 
geometrically, i.e., the fitness function )(Nf = R > 1 (as in the linear case) 

)(Nf2. As the population size N increases, its fitness  decreases. 
3. The fitness decreases to the value 1, when the population reaches a 

threshold size, called the carrying capacity K. This is the sustainable 
population size and it is the equilibrium point of the difference equation (the 
fixed point of the map F).  
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Under these assumptions, one may develop a plethora 
of models including all the known ones. 
 

(i) The discrete logistic model (logistic map) 
Here we assume that the fitness function )(Nf = 

t

t

N
N 1+  decreases linearly.  

• The equation of the line passing through the points (0,R) and (K,1) is given 
by: 

RN
K

RNf
N
N

tt

t

t +⎟
⎠
⎞

⎜
⎝
⎛ −
−==+ 1)(1

  =
( )
K

NRRK t1−−
 

    ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −

−=+ ttt N
K

RRNN 1
1

 

If we switch to “r”, r =R-1, we get 
 
 
     

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −+=+ K

NrNN t
tt 111   
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*For dynamists, if we let xN
RK
R

=
−1

, we get the popular logistic map   

      F(x) =Rx (1-x) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The fitness function of the discrete logistic model 
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(ii) The Ricker Model 
 
Here we assume that the fitness function )(Nf decreases exponentially,  
 

)(Nf = e(r-sN)        

 

To find r and s, we utilize the assumptions: 
 

    f (0)=R=e = r =  ln R r ( )rR +≈1  

              f(K)=1=e   r-sk=0  s=⇒−SKr ⇒
K
r  

Hence:   tN
k
rr

t e
Nt
N −

+ =1  

And now we have the Ricker model 
 
  ⎟

⎠
⎞

⎜
⎝
⎛ −

+ = K
Nr

tt

t

eNN
1

1  
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Figure 2: The fitness function of the Ricker model 
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(iii) The Beverton-Holt Model 
 

Here we assume that the fitness function  decreased as a rational 
function. 

)(Nf

=)(Nf  
bN
a
+1  

 
Now f(0) = R = a 
 

         f(K) =1 =
K

Rb
bK

R 1
1

−
=⇒

+  
 

t
t

t

N
K

R
R

N
N

⎟
⎠
⎞

⎜
⎝
⎛ −

+
=+

11

1    

 

t

t
t NRK

RKNN
)1(1 −+

=+  
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Figure 3: The fitness function of the Beverton-Holt model 
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The Moral of the above story 
It is now evident that based on our biological assumptions, one may 

construct infinitely many models that satisfy those assumptions. There are 
two points worth mentioning here.  

1. Though all the models are mathematically correct, one may 
verify in the lab that some models are better fit to the 
obtained data than others. For instance, in the data obtained 
in the lab on the density of E. Coli and paramecium, both the 
Beverton-Holt and the Ricker models were better fit than the 
discrete logistic model.  

2. The second point to make is that some models possess richer 
dynamics than others and are thus potentially more useful in 
describing complicated behavior. For example, the Beverton-
Holt model is too simplistic to account for cyclic behavior 
such as bust and boom in population density, while both the 
Ricker and logistic models may exhibit cyclic behavior and 
even chaos. 
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Parameter Estimation 
 
1. Logistic Model 

        t

t

t N
K

RR
N
N

⎟
⎠
⎞

⎜
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−=+ 11  

  Y = mx+b    b=R, m =
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2. Ricker Model  
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3. Beverton-Holt Model 
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Paramecium 
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 P. Caudatum          P. Aurelia             P. Caudatum 
 
 
 
 
 
 
 
restart:with(plots):T:=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15]; 
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T := 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15[ ]  
> S:=[2,5,22,16,39,52,54,47,50,26,69,51,57,70,53,59,57]; 

S := 2, 5, 22, 16, 39, 52, 54, 47, 50, 26, 69, 51, 57, 70, 53, 59, 57[ ]  
> pts:=[seq([T[k],S[k]],k=1..15)]; 

pts  := [ 0, 2[ ], 1, 5[ ], 2, 22[ ], 3, 16[ ], 4, 39[ ], 5, 52[ ], 6, 54[ ], 7, 47[ ], 8, 50[ ], 9, 26[ ], 10, 69[ ], 11, 51[ ], 12, 57[ ], 

13, 70[ ], 14, 53[ ]]  
> p1:=plot(pts,style=point): 
> F:=n->if n=0 then 2 else 2.8*60*F(n-1)/(60+1.8*F(n-1)) 
end if: 
> pt:=[seq([T[k],F(T[k])],k=1..15)]: 
> p2:=plot(pt,style=point,color=blue): 
> display(p1,p2); 
>  
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>  
P. Caudatum: Blue=data from the Beverton-Holt model; Red= data from the lab 

 

 20



> 
restart:with(plots):T:=[2,5,22,16,39,52,54,47,50,26,6
9,51,57,70,53,59,57]; 

T := 2, 5, 22, 16, 39, 52, 54, 47, 50, 26, 69, 51, 57, 70, 53, 59, 57[ ]  
> 
S:=[2/5,5/22,22/16,16/39,39/52,52/54,54/47,47/50,50/2
6,26/69,69/51,51/57,57/70,70/53,53/59,59/57,1]; 

S := 2
5

, 5
22

, 11
8

, 16
39

, 3
4

, 26
27

, 54
47

, 47
50

, 25
13

, 26
69

, 23
17

, 17
19

, 57
70

, 70
53

, 53
59

, 59
57

, 1⎡
⎢
⎣

⎤
⎥
⎦  

> pts:=[seq([T[k],S[k]],k=1..16)]; 
pts := ⎡⎢

⎣
2, 2

5
⎡
⎢
⎣

⎤
⎥
⎦

, 5, 5
22

⎡
⎢
⎣

⎤
⎥
⎦

, 22, 11
8

⎡
⎢
⎣

⎤
⎥
⎦

, 16, 16
39

⎡
⎢
⎣

⎤
⎥
⎦

, 39, 3
4

⎡
⎢
⎣

⎤
⎥
⎦

, 52, 26
27

⎡
⎢
⎣

⎤
⎥
⎦

, 54, 54
47

⎡
⎢
⎣

⎤
⎥
⎦

, 47, 47
50

⎡
⎢
⎣

⎤
⎥
⎦

, 50, 25
13

⎡
⎢
⎣

⎤
⎥
⎦

, 

26, 26
69

⎡
⎢
⎣

⎤
⎥
⎦

, 69, 23
17

⎡
⎢
⎣

⎤
⎥
⎦

, 51, 17
19

⎡
⎢
⎣

⎤
⎥
⎦

, 57, 57
70

⎡
⎢
⎣

⎤
⎥
⎦

, 70, 70
53

⎡
⎢
⎣

⎤
⎥
⎦

, 53, 53
59

⎡
⎢
⎣

⎤
⎥
⎦

, 59, 59
57

⎡
⎢
⎣

⎤
⎥
⎦

⎤
⎥
⎦  

> p1:=plot(pts,style=point): 
> display(p1); 
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Estimation of parameters of P. Caudatum 
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> with(CurveFitting): 
 
LeastSquares([[2,2/5],[5,5/22],[22,22/16],[16,16/
39],[39,39/52],[52,52/54],[54,54/47],[47,47/50],[
50,50/26],[26,26/69],[69,69/51],[51,51/57],[57,57
/70],[70,70/53],[53,53/59],[59,59/57],[57,1]], x 
);plot(253376505595052076707/71071745785060980960
0+1904955001231813129/142143491570121961920*x,x=0
..6); 
 
 

253376505595052076707
710717457850609809600

 + 1904955001231813129
142143491570121961920

 x
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Estimation of parameters of P. Caudatum 
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> Paramecium: P. Aurelia 
restart:with(plots):T:=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15]; 

T := 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15[ ]
 

> 
S:=[2,3,29,92,173,210,240,240,240,240,219,255,252,270,240,2
49]; 

S := 2, 3, 29 , 92 , 173 , 210 , 240 , 240 , 240 , 240 , 219 , 255 , 252 , 270 , 240 , 249[ ]
 

> pts:=[seq([T[k],S[k]],k=1..15)]; 
pts  := [ 0, 2[ ], 1, 3[ ], 2, 29[ ], 3, 92[ ], 4, 173[ ], 5, 210[ ], 6, 240[ ], 7, 240[ ], 8, 240[ ], 9, 240[ ], 10 , 219[ ], 11 , 255[ ], 

12, 252[ ], 13, 270[ ], 14, 240[ ]]  
> p1:=plot(pts,style=point): 
> F:=n->if n=0 then 2 else 2.95*255*F(n-1)/(255+1.95*F(n-
1)) end if: 
> pt:=[seq([T[k],F(T[k])],k=1..15)]: 
> p2:=plot(pt,style=point,color=blue): 
> display(p1,p2); 
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 P. Aurelia: Blue: Data from the Beverton-Holt model; 

Red= Data from the Lab. 
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> 
restart:with(plots):T:=[2,3,29,92,173,210,240,240,240,240,219,255,2
52,270,240,249]; 

T := 2, 3, 29, 92, 173, 210, 240, 240, 240, 240, 219, 255, 252, 270, 240, 249[ ]
 

> 
S:=[2/3,3/29,29/92,92/173,173/210,210/240,1,1,1,240/249,219/255,255
/252,252/270,270/240,240/249,1]; 

S := 2
3

, 3
29

, 29
92

, 92
173

, 173
210

, 7
8

, 1, 1, 1, 80
83

, 73
85

, 85
84

, 14
15

, 9
8

, 80
83

, 1⎡
⎢
⎣

⎤
⎥
⎦

 
> pts:=[seq([T[k],S[k]],k=1..15)]; 

pts := ⎡⎢
⎣

2, 2
3

⎡
⎢
⎣

⎤
⎥
⎦

, 3, 3
29

⎡
⎢
⎣

⎤
⎥
⎦

, 29, 29
92

⎡
⎢
⎣

⎤
⎥
⎦

, 92, 92
173

⎡
⎢
⎣

⎤
⎥
⎦

, 173, 173
210

⎡
⎢
⎣

⎤
⎥
⎦

, 210, 7
8

⎡
⎢
⎣

⎤
⎥
⎦

, 240, 1[ ], 240, 1[ ], 240, 1[ ], 

240, 80
83

⎡
⎢
⎣

⎤
⎥
⎦

, 219, 73
85

⎡
⎢
⎣

⎤
⎥
⎦

, 255, 85
84

⎡
⎢
⎣

⎤
⎥
⎦

, 252, 14
15

⎡
⎢
⎣

⎤
⎥
⎦

, 270, 9
8

⎡
⎢
⎣

⎤
⎥
⎦

, 240, 80
83

⎡
⎢
⎣

⎤
⎥
⎦

⎤
⎥
⎦

 
> p1:=plot(pts,style=point): 
> display(p1); 
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Estimation of parameters of P. Aurelia 
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> with(CurveFitting): 
LeastSquares( 
[[2,2/3],[3,3/29],[29,29/92],[173,173/210],[240,1],[241,1],[219,219
/255],[252,252/270],[240,240/249],[249,1]], x ); 

1821049645003
5368659548280

 + 4640191449
1789553182760

 x

 
>restart:with(plots):T:=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]; 

 

T  := 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15[ ]
 

> S:=[2,3,29,92,173,210,240,240,240,240,219,255,252,270,240,249]; 
S := 2, 3, 29, 92, 173, 210, 240, 240, 240, 240, 219, 255, 252, 270, 240, 249[ ]

 
> pts:=[seq([T[k],S[k]],k=1..15)]; 

pts  := [ 0, 2[ ], 1, 3[ ], 2, 29[ ], 3, 92[ ], 4, 173[ ], 5, 210[ ], 6, 240[ ], 7, 240[ ], 8, 240[ ], 9, 240[ ], 10, 219[ ], 11, 255[ ], 

12 , 252[ ] , 13 , 270[ ] , 14 , 240[ ]]  
> p1:=plot(pts,style=point): 
> F:=n->if n=0 then 2 else 2.95*255*F(n-1)/(255+1.95*F(n-1)) end if: 
> pt:=[seq([T[k],F(T[k])],k=1..15)]: 
> p2:=plot(pt,style=point,color=blue): 
> display(p1,p2); 
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Stability Analysis 
 
Fixed (equilibrium) points, F(N*) = N* 
Periodic Points: NNF k =)(  
Orbit of a k-periodic point: O( )N = { N , F( N ), F (2 N ),…, F (1−k N )}. 
If we let N  = N and use the language of difference equations (N = F(N t )), then    o 1+t

 O(N0) = {N0, N1, …, Nk-1} 
 
 

Theorem (1) A fixed point N is  *

(i) Stable (asymptotically stable) if )(' *NF <1 (sink, attracting) 

(ii) unstable if )(' *NF >1  (source, repelling) 
 

(iii) “Neutral” if )(' *NF  =1       
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Using the chain rule we have the following theorem. 
 

Theorem (2) A k-periodic orbit is 
(i) Stable if )('...)(')(' 11 −××× ko NFNFNF <1 
(ii) Unstable if )('...)(')(' 11 −××× ko NFNFNF >1 
(iii) “Neutral” if )('...)(')(' 11 −××× ko NFNFNF =1 

 
A complete analysis of the neutral case can be 
found in  
 
“Elaydi, Discrete Chaos:2nd Edition, 
CRC/Chapman & Hall 2008.”  
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Remarks: 
1. The dynamics of the Beverton-Holt Model is simple (and is similar to the 

dynamics of the logistic differential equation )1( xrx
dt
dx

−= .) 
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Cobweb (Stair-step) diagram of the Beverton-Holt map. 

There are two fixed points N = 0, which is unstable, and N = K which is globally stable 
on (0, ∞). 

*
1

*
2

2. The dynamics of both the discrete logistic and the Ricker Models is rather 
complicated: from period doubling bifurcation to chaotic dynamics  
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Bifurcation diagram of the Ricker model: Period Doubling 
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Bifurcation diagram for the Ricker model 
Entering the chaotic region 
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  Competition Models 
 

There are two types of competition, one occurs among individuals of the 
same species (intraspecific), and the other occurs among two (or more) species 
(interspecific competition). 

 
*Intraspecific competition was accounted for in one dimensional models as 

we have already seen. 
 
*Interspecific competition will be our focus here. G.F. Gause (1935) 

conducted an experiment on three different species of paramecium, P. Aurelia, 
P. Caudatum and P. Bursarua T. Park (1954) conducted a similar experiment on 
two species of the flour beetles, Tribolium (T) Castaneum and T. confusum. 

 
Based on these experiments, the competition exclusion principle” was 

established: 
 If two species are very similar (such as sharing the same food ecological 

niche, etc.), they cannot coexist.  
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P. Aurelia out competes P. Caudatum 

Leslie-Gower Competition Model  
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Let tt yx ,  be the population densities of species x and y. 
Assumptions:  
(i) In the absence of species y, species x grows according to the Beverton-Holt Model, 

    
t

t
t xRK

xKRx
)1( 11

11
1 −+
=+  

(ii) In the absence of species x, species y grows according to the Beverton-Holt Model, 

      
t

t
t yRK

yKRy
)1( 22

22
1 −+
=+  

If species x and y are competing, then their fitness f will be adversely affected: 

tt

t ycxRK
KRxf

211

11

)1(
)(

+−+
=

)()1(
)(

2122

22

txcyRK
KRyf

t

t +−+
=  
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Where  measures the competition efficiency of species y and  
measure the competition efficiency of species x. Hence we have the 
Leslie-Gower Model.  

2c 1c

 

tt

t
t ycxRK

xKRx
211

11
1 )1( +−+
=+  

     
tt

t
t xcyRK

yKRy
122

22
1 )1( +−+
=+  

I. The Ricker Competition Model 

])1(exp[ 2

1

11 t
t

tt yc
K
xrxx −−=+  

])1(exp[ 1

1

21 t
t

tt xc
K
yryy −−=+  
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II. The Discrete Logistic Competition Model 

t
t

tt yc
K
xrxx 2

1

11 )1(1[ −−+=+  

t
t

tt xc
K
yryy 1

2

21 )1(1[ −−+=+  

Estimation of parameters 
Leslie-Gower Model (as an example) 
Step 1. Find 2211 ,,, KRKR  by growing species x and y separately as for single 
species. 
 
Step 2. For t=I, 0 1−≤≤ ni , we have  

   
i

i
i

i
i ycxRK

xKRx
211

11
1 )1( +−+
=+  

Hence   
1

11111
2

))1((

+

+ −+−
=

ii

iiii

xy
xRKxxKRc  
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We estimate  as the average of all  2c ic2

∑
−

=
=

1

0
22

1 n

i

ic
n

c  

 
 

Comparative Data Analysis 
Now we use the data obtained from the lab to plot the phase space of the two 
species of Paramecium, namely, P. Aurelia, and P. Caudatum.  

 
pts:=seq([T[k],S[k]],k=1..16); 

pts := 0.78, 2[ ], 1.56, 8[ ], 11.31, 20[ ], 25.74, 25[ ], 54.99, 24[ ], 63.18, 24[ ], 85.41, 24[ ], 59.67, 24[ ], 63.18, 21[ ], 

58.50, 15[ ], 68.25, 12[ ], 101.40, 9[ ], 107.64, 12[ ], 111.15, 6[ ], 87.75, 9[ ], 86.58, 3[ ]  
> plot([pts], 
style=point,symbol=diamond,color=blue); 
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P. Aurelia out competes P. Caudatum: Phase space portrait 
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P. Aurelia out competes P. Caudatum: Phase space portrait 
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#Phase Space 
> restart; 
> x[0]:=2*0.39:y[0]:=2:N:=4000: 
> for n from 0 to N do 
 > 
x[n+1]:=2.95*255*0.39*x[n]/(255*0.39+1.95*x[n]+y[
n]): y[n+1]:=1.84*60*y[n]/(60+0.84*y[n]+x[n]): 
 > end do: 
> pointlist:=seq([x[n],y[n]],n=0..N): 
> plot([pointlist], 
style=point,symbol=point,color=blue): 
> plot([pointlist]); 

 
> pointlist:=seq([x[n],y[n]],n=0..N): 
> plot([pointlist], 
style=point,symbol=cross,color=blue); 
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Phase space portrait of the Leslie-Gower model 
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Stability Analysis 
 

(Leslie-Gower Model) 
 
Equilibrium (fixed) points:  

    ),(1 ttt yxFx =+  
    ),(1 ttt yxGy =+  
 

Solve:  F(x,y) = x and G(x,y) = y 
 

For Leslie-Gower we obtain four fixed points (0,0), (K ,0), (0,K2), (x , y ), 
where 

1
* *

    
2121

22112*

)1)(1(
)1()[1(

ccRR
KcRKRx

−−−
−−−

=  

2121

11221*

)1)(1(
)1()[1(

ccRR
KcRKRy

−−−
−−−

=  
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*Stability via linearization 
 

We find the Jacobian matrix of system (1) 

   

  
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂
∂
∂

=

x
G
x
F

J
⎟
⎟
⎟
⎟

⎠

⎞

∂
∂
∂
∂

y
G
y
F

 

The eigenvalues of J determine the stability of the equilibria of (1).  
 
Determinant-Trace Analysis 
 
Given a 2x2 matrix A= (aij), its characteristic equation is given by  
 
  0det2 =+− AAtr λλ  

  AAtrAtr det4)(
2
1

2
2 −±=λ  
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Theorem. The eigenvalues of A lie inside the unit desk if  
 

2det1 <+< AAtr  

 
 

-1=tr A<det A, det A> - tr A-1, det A<1 
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Determinant-Trace Analysis I 
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Determinant-Trace Analysis II 

 
 

(From S. Elaydi, Discrete Chaos, 2008) 
 
 

Let 
)1(
)1()1(

11

22

2

2
2 −

−−
=

KR
KR

K
RM  and 

)1(
)1)(1(

221

111
1 −

−−
=

KRK
KRRM

 
 
 
Theorem. The following statements hold for the Leslie-Gower Model 

( )** , yx1. If 22 MC <  and 11 MC < , then  is “globally stable” 
2. If 22 MC <  and 11 MC > , then ( )0,1K  is “globally stable” 
3. If 22 MC <  and 11 MC < , then ( )2,0 K  is “globally stable” 
4. If 22 MC <  and 11 MC > , then ( )0,1K  and ( )2,0 K  are “locally” stable, 

while ( )** , yx  is a saddle.  
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The four scenarios are depicted in the graphs below.  
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Predator-Prey Models 
  

In 1933 and later with Bailey in 1935, Nicholson made two assumptions for 
building his host-parasitoid model. Though the model deals mainly with 
parasites, it serves as a starting point for understanding and constructing 
predator-prey models. 
 
Let Nt denote the population size of the prey (host) at the time period t, and 
 Pt denote the population size of the predator (parasitoid) at time period t. 
 
The Nicholson’s assumptions on parasitoid searching behavior are: 

(1) The total number of encounters of the parasitoids with hosts is given by 
                Ne = a Nt Pt      (4.1) 

   
Where a  is the probability that a given predator will encounter a given 
prey during its search lifetime.  
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(2) These Ne encounters are distributed randomly among the available 
hosts. Nicholson made use of the poison distribution for the occurrence of 
discrete random events, in this case the occurrence of encounters between 
a predator and its prey. The distribution is defined by the mean frequency 
of occurrence, namely, the average number of encounters with a given 
prey, i.e. Ne  ⁄ Nt. 

 
If we assume that a parasitoid lays as egg at each encounter, then the ratio 

Ne/Nt  is the average number of eggs laid per host. On the other hand, for 
predators that consume their prey, the ratio Ne /Nt  is the average number 
encounters with a particular “prey location”. Thus the probability of a host (prey 
location) being encountered 0, 1, 2, …, n times is given respectively by 

    ,, xx exe −−

!2

2
x

!
,...,

n
xe

n

x− xe−

   

Where x¯= Ne /Nt  . For our purpose, we only need the probability that the host or 
the prey not being detected (the zero term of the distribution, namely exp(-Ne/Nt ) 
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 Consequently, the probability of actually being parasitized (attached) is given 
by  
    1-exp(-Ne /Nt ) 
 
Let  
 

Na=Nt [1-exp(-Ne /Nt )]                    (4.2) 
 
Substituting from (4.1) into (4.2) yields 
 
    Na=Nt [1-exp (-aPt)]              (4.3) 
 

In the final step of creating the model we assume that each host parasitized 
leads to one adult parasitoid in the next generation, i.e.,  

Pt+1 = Na.   

 
Substituting in (4.3) we obtain  

        Pt+1 = Nt[1-exp(-aPt )] 
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Moreover, assuming that in the absence of the parasitoids (prey), the host (prey) 
grows geometrically with rate R, then we have 
 
    Nt+1=RNt exp (-a Pt). 
 
 The Nicholson-Bailey model is now given by  
 
    Nt+1=RNt exp (-a Pt)                             (4.4a) 
    Pt+1=Nt [1-exp (-a Pt)]                         (4.4b) 
 
 The possible equilibrium (N*,P*) is given by  
 

    N*= )1(
ln
−λ
λλ

a , a
P λln* =  

 
 The other equilibrium point is (0,0).  
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J=⎜
⎜
⎝

⎛

−
aP

aP

e

eR

1 ⎟
⎟
⎠

⎞−
aP

aP

eaN

eNaλ
 

 
At (0,0), 

J=  ⎜⎜
⎝

⎛
0
R

⎟⎟
⎠

⎞
0
0

 
Thus (0,0) is stable if 0<R<1 and unstable for R>1. 
 
At (N*,P*), 

J=
⎜⎜
⎜

⎝

⎛

−
R
11

1

⎟
⎟
⎟
⎟

⎠

⎞

−
−

−
−

)1(
ln

)1(
ln

R
R

R
RR

 

 
Verify that │tr J│< 1+det J < 2. 
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1- )1(
ln
−R
R

< 1-2 
)1(

ln
−R
R

 + 
)1(

ln
−R

RR
<2 

 
The left inequality is satisfied for R >1. The right inequality is satisfied if 

4.244R <≈  
 
Hence (N*, P*) is stable if 244.41 <≈< R  
 
 
 

Bedington, Free and Lawton (1975) 
A Predator-Prey Model 
  

Notice that in the absence of parasitoids, the equation of the host (prey) becomes 
Nt+1 = RNt which gives the geometric growth Nt=RtN0. Such a scenario may be 
valid for certain hosts but may fail for most prey. Instead, Bedington et al 
assumed a Ricker-type growth model, 
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    Nt+1 = Nt exp(r (1-Nt/K)), where r = ln 
 
Hence the new model is given by 
 Nt+1  = Nt exp (r(1-Nt/K) - aPt)    (4.5a) 

Pt+1 = Nt [1-exp (-aPt)]                (4.5b)   
 
  
 

Lab experiment  
 

Another experiment performed by Gause (1934) involved Paramecium 
aurelia and Saccharomyces exiguous (a yeast on which p. Aurelia feeds).  
Predator-Prey Models:  
  
> 
restart:with(plots):T:=[155,40,20,10,25,55,120,110,50
,20,15,20,70,135,135,50,15,20]; 
 

T  := 155 , 40 , 20, 10, 25, 55, 120 , 110 , 50, 20, 15, 20, 70, 135 , 135 , 50, 15, 20[ ]  
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> 
S:=[90,175,120,60,10,20,15,55,130,70,30,15,20,30,80,1
70,90,30]; 

S := 90, 175, 120, 60, 10, 20, 15, 55, 130, 70, 30, 15, 20, 30, 80, 170, 90, 30[ ]  
> pts:=seq([T[k],S[k]],k=1..17); 

pts := 155, 90[ ], 40, 175[ ], 20, 120[ ], 10, 60[ ], 25, 10[ ], 55, 20[ ], 120, 15[ ], 110, 55[ ], 50, 130[ ], 20, 70[ ], 

15, 30[ ], 20, 15[ ], 70, 20[ ], 135, 30[ ], 135, 80[ ], 50, 170[ ], 15, 90[ ]  
>  
> plot([pts], style=point,symbol=diamond,color=blue); 

 
i. plot([pts]); 
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